
SPECIFICATION FORM

Compression springs are open-coil helical springs wound or constructed to oppose compression along the axis of wind. Helical Compression Springs are the most common spring configuration. Generally, they are either placed over a rod or fitted inside a hole. When you put a load on a compression spring, making it shorter, it pushes back against the load and tries to get back to its original length. Compression springs offer resistance to linear compressing forces (push), and are in fact one of the most efficient energy storage devices.

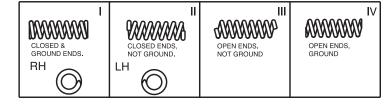
Compression springs can be supplied with ground ends for improved squareness and reduced solid heights.

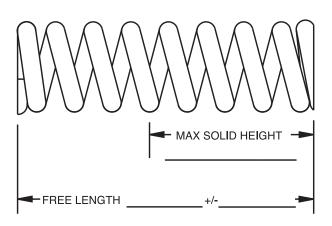
Comprehensive Capabilities

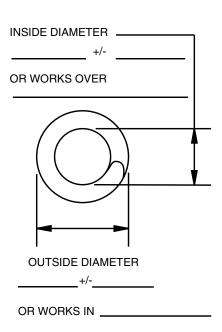
Configurations:

- Cylindrical Conical Barrel Hourglass
- Closed Ends Open Ends Reduced Ends
- Ground Ends
 Unground Ends
- Constant Pitch Variable Pitch

Secondaries:


- Stress Relieve Heat Treating Passivation
- Shot Peening Plating Painting
- Powder Coating
 Grinding


Wire sizes from .002" through .625"


Materials:

- Carbon Steels
 Alloy Steels
- Stainless Steel 17-7, 302, 304 and 316
- Phosphor Bronze
- Hastelloy Inconel 600, 718 and x750
- Beryllium Copper Elgiloy®†

[†] Elgiloy is a trademark of Elgiloy Ltd. Partnership.

INDICATE UNITS OF MEASURE (IN. & LB.), (MM & KG)

1.	MATERIAL .						
2.	WIRE DIAMI	ETER					
3.	DIRECTION OF WIND		(OPT		LH	
4.	STYLE OF E	ND	I		П	Ш	IV
5.	SQUARENES	SS					
6.	RATE	+/	I	BETWE	EN	&	
7.	LOAD 1		_ +/		@		
8.	LOAD 2		_ +/		@		
9.	NUMBER OF	ACTIVE C	OILS				
10.	TOTAL NUMBER OF COILS						
11.	FINISH						
12.	FREQUENCY OF COMPRESSION						
	CYCLES/SEC. AND WORKING RANGE						
		IN. TO		_ IN. (OF LENGT	Н	
13.	OPERATING TEMP°F						
14.	OTHER:						

COMPANY:ADDRESS:					
CITY:					
STATE:	ZIP:				
CONTACT:					
PHONE:					
FAX:					
EMAIL:					
QUANTITIES TO BE QUOTED:					
END USE OR APPLICATION:					